Example What's the area enclosed in one "petal" of the polar curve

$$
r=\sin (3 \theta) ?
$$

You would write down an integral of the form $\int_{\theta_{1}}^{\theta_{2}} \frac{1}{2} r^{2} d r$ but what to
How to qualitatively understand polar curves:

So: $\theta_{1}=0, \theta_{2}=\pi / 3$ will suffice as bounds

$$
\begin{aligned}
& \int_{0}^{\pi / 3} \frac{1}{2} \sin ^{2}(3 \theta) \quad d \theta=\ldots \ldots \\
& \quad \begin{array}{l}
\text { use } \cos (6 \theta) \\
\\
=1-2 \sin ^{2}(23) \text { to soke this } \\
\text { integral) }
\end{array}
\end{aligned}
$$

